

ADVANCED SUBSIDIARY GCE MATHEMATICS

Further Pure Mathematics 1

4725

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Friday 5 June 2009 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 Evaluate
$$\sum_{r=101}^{250} r^3$$
.

2 The matrices **A** and **B** are given by $\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$ and **I** is the 2 × 2 identity matrix. Find the values of the constants *a* and *b* for which $a\mathbf{A} + b\mathbf{B} = \mathbf{I}$. [4]

2

- 3 The complex numbers z and w are given by z = 5 2i and w = 3 + 7i. Giving your answers in the form x + iy and showing clearly how you obtain them, find
 - (i) 4z 3w, [2]

(ii)
$$z^*w$$
.

- 4 The roots of the quadratic equation $x^2 + x 8 = 0$ are p and q. Find the value of $p + q + \frac{1}{p} + \frac{1}{q}$. [4]
- 5 The cubic equation $x^3 + 5x^2 + 7 = 0$ has roots α , β and γ .
 - (i) Use the substitution $x = \sqrt{u}$ to find a cubic equation in *u* with integer coefficients. [3]
 - (ii) Hence find the value of $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$. [2]
- 6 The complex number 3 3i is denoted by *a*.

(i) Find
$$|a|$$
 and $\arg a$. [2]

- (ii) Sketch on a single Argand diagram the loci given by
 - (a) $|z-a| = 3\sqrt{2}$, [3]
 - (b) $\arg(z-a) = \frac{1}{4}\pi$. [3]

(iii) Indicate, by shading, the region of the Argand diagram for which

$$|z-a| \ge 3\sqrt{2}$$
 and $0 \le \arg(z-a) \le \frac{1}{4}\pi$. [3]

7 (i) Use the method of differences to show that

$$\sum_{r=1}^{n} \{ (r+1)^4 - r^4 \} = (n+1)^4 - 1.$$
 [2]

- (ii) Show that $(r+1)^4 r^4 \equiv 4r^3 + 6r^2 + 4r + 1.$ [2]
- (iii) Hence show that

$$4\sum_{r=1}^{n}r^{3} = n^{2}(n+1)^{2}.$$
 [6]

[2]

- 3
- 8 The matrix **C** is given by $\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$.
 - (i) Draw a diagram showing the image of the unit square under the transformation represented by C. [3]

The transformation represented by C is equivalent to a transformation S followed by another transformation T.

- (ii) Given that S is a shear with the y-axis invariant in which the image of the point (1, 1) is (1, 2), write down the matrix that represents S. [2]
- (iii) Find the matrix that represents transformation T and describe fully the transformation T. [6]
- 9 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & 2 \end{pmatrix}$.
 - (i) Find, in terms of *a*, the determinant of A.
 - (ii) Hence find the values of *a* for which A is singular.
 - (iii) State, giving a brief reason in each case, whether the simultaneous equations

$$ax + y + z = 2a,$$

 $x + ay + z = -1,$
 $x + y + 2z = -1,$

have any solutions when

- (a) a = 0,
- **(b)** a = 1.

10 The sequence u_1, u_2, u_3, \dots is defined by $u_1 = 3$ and $u_{n+1} = 3u_n - 2$.

- (i) Find u_2 and u_3 and verify that $\frac{1}{2}(u_4 1) = 27$. [3]
- (ii) Hence suggest an expression for u_n . [2]
- (iii) Use induction to prove that your answer to part (ii) is correct. [5]

[3]

[3]

[4]

4725 Further Pure Mathematics 1

1.		B1		State correct value of S_{250} or S_{100}
		M1		Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})
	984390625 - 25502500 = 958888125	A1	3 3	Obtain correct exact answer
2.	3a+5b=1, a+2b=1	M1	3	Obtain a pair of simultaneous
		M1		equations
	a = -3, b = 2	A1 A1	4	Attempt to solve
			4	Obtain correct answers.
3.	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
	(ii) 1+41i	B1 B1	2	Correct real and imaginary parts
4.	Either $n \perp q = 1$ $nq = 9$	B1	4	Both values stated or used
4.	Either $p+q=-1, pq=-8$	DI		Both values stated of used
	$\frac{p+q}{pq}$	B1		Correct expression seen
		M1		Use their values in their expression
	$-\frac{7}{8}$	Al	4	Obtain correct answer
	8		4	
		B1		Substitute $x = \frac{1}{u}$ and use new
	Or $\frac{1}{p} + \frac{1}{q} = 8$			quadratic
	p + q = 1	B1		Correct value stated
	7	M1		Use their values in given expression
	$-\frac{7}{8}$	A1		Obtain correct answer
	Or $\frac{-1\pm\sqrt{33}}{2}$	M1		Find roots of given quadratic
	2			equation
		A1		Correct values seen
	$-\frac{7}{8}$	M1		Use their values in given expression
5		A1 M1		Obtain correct answer
5.	(i) $u^3 = \{(-)(5u+7)\}^2$	M1 A1		Use given substitution and rearrange
		AI		Obtain correct expression, or equivalent
				<u>^</u>
	$u^3 - 25u^2 - 70u - 49 = 0$	A1	3	Obtain correct final answer
	(ii)	M1		Use coefficient of <i>u</i> of their cubic or
				identity connecting the symmetric
				functions and substitute values from
				given equation
	-70	A1 ft	2	Obtain correct answer
			5	

6.	(i) $3\sqrt{2}, -\frac{\pi}{4}$ or -45° AEF	B1 B1	2	State correct answers
	(ii)(a) (ii)(b)	B1B1 B1 ft B1 B1 B1 B1	3	Circle, centre $(3, -3)$, through <i>O</i> ft for $(\pm 3, \pm 3)$ only Straight line with +ve slope, through $(3, -3)$ or their centre Half line only starting at centre
	(iii)	B1ft B1ft B1ft	3 11	Area above horizontal through <i>a</i> , below (ii) (b) Outside circle
7.	(i)	M1 A1	2	Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1	2	Attempt to expand and simplify Obtain given answer correctly
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
		M1* *DM1		Consider sum of 4 separate terms on RHS Required sum is LHS – 3 terms
	$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	A1		Correct unsimplified expression
	$4\sum_{r=1}^{n} r^{3} = n^{2} (n+1)^{2}$	A1	6 10	Obtain given answer correctly
8.	(i)	B1 B1 B1	3	Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found Accurate diagram sketched
	(ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	B1 B1	2	Each column correct
	(iii) $Either$ $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	B1 M1		Correct inverse for their (ii) stated Post multiply C by inverse of (ii)
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	A1ft		Correct answer found
	Or	M1 A2ft		Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each error
		B1 B1 B1 B1	6 11	Shear, x axis invariant or parallel to x-axis eg image of $(1, 1)$ is $(3, 1)$ SR allow s.f. 2 or shearing angle of correct angle to appropriate axis

9.	(i) $\begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$	M1 A1		Correct expansion process shown Obtain correct unsimplified expression
	$2a^2 - 2a$	A1	3	Obtain correct answer
	(ii)	M1		obtain concer answer
	a = 0 or 1	Alft		Equate their det to 0
		Alft	3	Obtain correct answers, ft solving a quadratic
	(iii) (a)	B1 B1		Equations consistent, but non unique solutions
	(b)	B1		Correct equations seen &
		B1	4	inconsistent, no solutions
10	<u></u>	2.61	10	
10.	i) 7 10	M1		Attempt to find next 2 terms
	$u_2 = 7 \ u_3 = 19$	A1	3	Obtain correct answers
		A1	3	Show given result correctly
	(ii)	M1		Expression involving a power of 3
	$u_n = 2(3^{n-1}) + 1$	A1	2	Obtain correct answer
	(iii)	B1ft		Verify result true when $n = 1$ or $n = 2$
		M1		Expression for u_{n+1} using recurrence
	$u_{n+1} = 3(2(3^{n-1})+1) - 2$			relation
		A1		Correct unsimplified answer
	$u_{n+1} = 2(3^n) + 1$	A1		Correct answer in correct form
		B1	-	Statement of induction conclusion
			5	
			10	